Russian Journal of Organic Chemistry, Vol. 39, No. 12, 2003, pp. 1733–1737. Translated from Zhurnal Organicheskoi Khimii, Vol. 39, No. 12, 2003, pp. 1806–1810. Original Russian Text Copyright © 2003 by Odinokov, Nazmeeva, Savchenko.

First Example of Trifluoromethylation in the Ecdysteroid Series. Synthesis of (20RS)-20-O-Hydro-20-trifluoromethylpoststerone

V. N. Odinokov, S. R. Nazmeeva, and R. G. Savchenko

Institute of Petroleum Chemistry and Catalysis, Academy of Sciences of Bashkortostan and Ufa Research Center, Russian Academy of Sciences, pr. Oktyabrya 141, Ufa, 450075 Bashkortostan, Russia fax: (3472)312750; e-mail: ink@anrb.ru

Received April 12, 2003

Abstract—The title compound was synthesized by trifluoromethylation of poststerone derivatives with trimethyl(trifluoromethyl)silane in the presence of tetrabutylammonium fluoride.

Replacement of a methyl group by trifluoromethyl, which has a comparable size but is strongly electronacceptor and lipophilic, endows an organic molecule with new physical, chemical, and biological properties [1, 2]. Many procedures for introduction of trifluoromethyl group into organic compounds are known [3], but the most promising is the use of trimethyl(trifluoromethyl)silane as nucleophilic trifluoromethylating agent [2, 4]. This reagent is applicable to various organic compounds, including keto steroids [4]; however, no examples of trifluoromethylation in the series of ecdysteroids have so far been reported.

We previously found [5, 6] that polyhydroxysterols do not undergo trifluoromethylation if at least one hydroxy group is not protected [6]. In this case, trifluoromethylation of the hydroxy rather than keto group occurs [5, 6]. We have succeeded in effecting trifluoromethylation of 14α -O-trimethylsilylpoststerone diacetate V and acetonide VI. Compounds V and VI were synthesized by oxidative cleavage at the C^{20} - C^{22} bond [7] of 20-hydroxyecdysone (I) isolated from Serratula coronata [8]. The resulting poststerone II was converted into diacetate III and acetonide IV which were treated with Me_3SiCF_3 [5] to obtain ketones V and VI. Subsequent reactions of the latter with Me₃SiCF₃ in the presence of tetrabutylammonium fluoride gave the corresponding products of nucleophilic addition of CF_3 group at the $C^{20}=O$ carbonyl group, (20RS)-14α,20-di-O-trimethylsilyl-20-(trifluoromethyl)poststerone diacetate VII and acetonide **VIII**. Here, the $C^6=O$ group remains intact, as follows from the IR, UV, and ¹H and ¹³C NMR

spectra. The fact that the addition of Me₃SiCF₃ occurred just at the C²⁰=O group in V and VI is confirmed by the following data. The ¹³C NMR spectra of the products lack signal at about $\delta_{\rm C}$ 209 ppm, but two quartets appear at $\delta_{\rm C}$ 78 ppm^{*} (J = 26 Hz) and δ 126 ppm (J = 288 Hz), which belong to the CCF₃ fragment. In the ¹H NMR spectra of compounds VII and VIII we observed two singlets (1:1) in the δ range from 1.2 to 1.7 ppm with an overall intensity corresponding to three protons (C²¹H₃) [instead of the singlet at δ 2.0 ppm from the acetyl group in the spectra of initial ketones V and VI), indicating that a new chiral (*RS*) center appeared at C²⁰.

Hydrolysis of diacetate **VII** with sodium hydroxide in aqueous methanol and of acetonide **VIII** with 70% acetic acid afforded diol **IX** which was treated with 5% hydrochloric acid in tetrahydrofuran in the presence of tetrabutylammonium fluoride to obtain the target trifluoromethyl-substituted poststerone analog, compound **X** (Scheme 1).

EXPERIMENTAL

The IR spectra were recorded on a Specord 75IR spectrometer in mineral oil. The UV spectra were measured on a Specord M-40 spectrophotometer from solutions in methanol and chloroform. The ¹H and

^{*} Insofar as the quartet signal from C²⁰ at about $\delta_{\rm C}$ 78 ppm in the ¹³C NMR spectrum is partially overlapped by the solvent signal (CDCl₃), the spectrum of **VII** was also measured in benzene- d_{6} .

III, V, VII, R = R' = Ac; IV, VI, VIII, $RR' = Me_2C$; IX, $R = SiMe_3$.

¹³C NMR spectra were obtained on a Bruker AM-300 instrument at 300.13 and 75 MHz, respectively, using chloroform-*d*, methanol- d_4 , or benzene- d_6 as solvent; the chemical shifts were measured relative to tetramethylsilane as internal reference. The melting points were determined on a Boetius microdevice. The optical rotations were measured with the aid of a Perkin–Elmer 141 polarimeter. TLC analysis was performed on Silufol plates; spots were visualized by treatment with a solution of 4-hydroxy-3-methoxybenzaldehyde in ethanol, acidified with sulfuric acid. **2,3-Di-***O***-acetylpoststerone** (or 2β , 3β -diacetoxy-**14** α -hydroxy-5 β -pregn-7-ene-6,20-dione) (III). Poststerone (II) was prepared according to the procedure described in [7] from 20-hydroxyecdysone (I) isolated from *Serratula coronata* [8]; mp 233–235°C (cf. [7]), $[\alpha]_{D}^{18} = +137.2^{\circ}$ (c = 1.13, MeOH); the IR and ¹H and ¹³C NMR spectra of II were identical to those reported in [9]. Compound II, 0.2 g (0.55 mmol), was dissolved in 2 ml of pyridine, 0.34 g (3.31 mmol) of acetic anhydride was added to the solution, and ~0.1 mg of 4-dimethylaminopyridine was then added

under stirring. After 3 h (TLC, eluent CHCl₃-MeOH, 5:1), the mixture was poured onto ice and extracted with $CHCl_3$ (3×10 ml), and the extract was washed with a saturated solution of sodium chloride (~5 ml), dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (5 g; eluent CHCl₃). Yield of **III** 0.23 g (94%), $R_{\rm f}$ 0.58 (CHCl₃–MeOH, 5:1), mp 111–114°C, $[\alpha]_{\rm D}^{24}$ = +106.1 (*c* = 1.48, CHCl₃). IR spectrum, v, cm⁻¹: 1250 (OCOCH₃); 1670, 1710 (C=CC=O); 1720 (C=O); 1750 (COCH₃). UV spectrum (CHCl₃), λ_{max} , nm (ϵ): 240 (12530). ¹H NMR spectrum ($CDCl_3$), δ , ppm (J, Hz): 0.57 s (3H, C¹⁸H₃), 0.98 s (3H, C¹⁹H₃), 1.50–2.40 m (12H, CH₂), 1.97 s (3H, $C^{21}H_3$), 2.07 s and 2.11 s (6H, MeCO), 2.35 m (1H, 5-H), 3.12 m (1H, 9-H), 3.28 t (1H, 17-H, J = 8.0), 4.99 br.d (1H, 2-H, J = 12.1), 5.27 br.s (1H, 3-H), 5.82 br.s (1H, 7-H). 13 C NMR spectrum (CDCl₃), δ , ppm: 17.0 q (C¹⁸), 20.4 t (C¹¹), 20.9 q and 21.0 q (CH₃CO), 21.1 t (C¹⁶), 23.7 q (C¹⁹), 28.9 t (C¹⁵), 29.6 t (C¹²), 31.3 q (C²¹), 31.7 t (C⁴), 33.6 d (C⁹), 33.8 t (C¹), 38.2 s (C¹⁰), 47.5 s (C¹³), 50.8 d (C⁵), 58.6 d (C¹⁷), 66.8 d (C³), 68.6 d (C²), 84.1 s (C^{14}) , 121.7 d (C^{7}) , 163.8 s (C^{8}) , 170.2 s and 170.6 s $(CH_{3}CO)$, 202.1 s (C^{6}) , 209.8 s (C^{20}) . Found, %: C 67.32; H 7.62. C₂₅H₃₄O₇. Calculated, %: C 67.25; H 7.67.

2,3-O-Isopropylidenepoststerone (or 14α -hydroxy-2 β ,3 β -isopropylidenedioxy-5 β -pregn-7-ene-6,20-dione) (IV). Phosphomolybdic acid, 10.0 mg, was added to a suspension of 0.25 g (0.7 mmol) of poststerone (II) in 25 ml of anhydrous acetone. The mixture was stirred for 20 min at room temperature and evaporated under reduced pressure, 80 ml of water was added to the residue, and the mixture was neutralized with a saturated aqueous solution of NaHCO₃ and extracted with diethyl ether $(3 \times 10 \text{ ml})$. The combined extracts were dried over $MgSO_4$ and evaporated under reduced pressure, and the residue was purified by column chromatography on silica gel (10 g; eluent CHCl₃-MeOH, 20:1). Yield of IV 0.2 g (73%), $R_{\rm f}$ 0.76 (CHCl₃–MeOH, 5:1), mp 183–184°C, $[\alpha]_{\rm D}^{23} = +58^{\circ}$ (c = 2.09, CHCl₃). IR spectrum, v, cm⁻¹: 1655 (C=CC=O), 1700 (C=O). UV spectrum (CHCl₃), λ_{max} , nm (ϵ): 240 (12390). ¹H NMR spectrum (CDCl₃), δ , ppm (*J*, Hz): 0.60 s (3H, C¹⁸H₃), 0.96 s (3H, C¹⁹H₃), 1.32 s and 1.48 s (6H, Me₂C), 2.14 s (3H, C²¹H₃), 1.20–2.40 m (13H, CH, CH₂), 2.85 m (1H, 9-H), 3.29 t (1H, 17-H, J = 8.0), 4.20 m (2H, 2-H, 3-H), 5.80 d (1H, 7-H, J = 2.5). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: 17.2 q (C¹⁸), 20.6 t (C¹¹),

21.2 t (C¹⁶), 23.6 q (C¹⁹), 26.5 q (**Me**₂CO₂), 26.7 t (C¹⁵), 28.6 q (**Me**₂CO₂), 30.0 t (C¹²), 31.5 q (C²¹), 32.0 t (C⁴), 34.6 d (C⁹), 37.6 t (C¹), 37.9 s (C¹⁰), 47.9 s (C¹³), 50.8 d (C⁵), 58.8 d (C¹⁷), 71.6 d (C³), 72.1 d (C²), 84.7 s (C¹⁴), 108.4 s (Me₂CO₂), 121.8 d (C⁷), 162.3 s (C⁸), 202.8 s (C⁶), 209.6 s (C²⁰). Found, %: C 71.84; H 8.42. C₂₄H₃₄O₅. Calculated, %: C 71.61; H 8.51.

2,3-Di-*O*-acetyl-14-*O*-trimethylsilylpoststerone (or 2 β ,3 β -acetoxy-14 α -trimethylsiloxy-5 α -pregn-7ene-6,20-dione) (V). Tetrabutylammonium fluoride, 0.9 mg, was added with stirring at 0°C to a mixture of 0.2 g (0.45 mmol) of compound III and 0.19 g (1.35 mmol) of Me₃SiCF₃ in 3 ml of anhydrous THF. The reaction was complete in 3 min (TLC). The mixture was evaporated under reduced pressure, and the residue was subjected to column chromatography on silica gel (3 g) using CHCl₃ as eluent. Yield of V 0.22 g (95%), R_f 0.73 (CHCl₃-MeOH, 10:1), mp 77– 80°C, $[\alpha]_D^{21} = +103^\circ$ (c = 0.87, CHCl₃) (cf. [6]). The IR, UV, and ¹H and ¹³C NMR spectra of the product were identical to those reported in [6].

2,3-*O*-Isopropylidene-14-*O*-trimethylsilylpoststerone (or 2β , 3β -isopropylidenedioxy-14 α -trimethylsiloxy-5 β -pregn-7-ene-6,20-dione) (VI). Tetrabutylammonium fluoride, 0.4 mg, was added to a mixture of 0.074 g (0.18 mmol) of compound IV and 0.078 g (0.55 mmol) of Me₃SiCF₃ in 3 ml of anhydrous THF under stirring at 0°C. The reaction was complete in 3 min (TLC). The mixture was evaporated under reduced pressure, and the residue was subjected to column chromatography on silica gel (2 g) using CHCl₃ as eluent. Yield of VI 0.085 g (98%), R_f 0.79 (CHCl₃-MeOH, 20:1), mp 70–72°C, $[\alpha]_D^{23} = +40^\circ$ (c = 1.75, CHCl₃) (cf. [6]). The IR, UV, and ¹H and ¹³C NMR spectra of the product were identical to those reported in [6].

(20*RS*)-2,3-Di-*O*-acetyl-14α,20-di-*O*-trimethylsilyl-20-trifluoromethylpoststerone [or (20*RS*)-2β,3β-diacetoxy-14α,20-bis(trimethylsiloxy)-20-trifluoromethyl-5β-pregn-7-en-6-one] (VII). Tetrabutylammonium fluoride, 0.5 mg, was added to a mixture of 0.134 g (0.23 mmol) of compound V and 0.097 g (0.68 mmol) of Me₃SiCF₃ in 3 ml of anhydrous THF under stirring at 0°C. The reaction was complete in 3 min (TLC). The mixture was evaporated under reduced pressure, and the residue was subjected to column chromatography on silica gel (2 g) using CHCl₃ as eluent. Yield of VII 0.141 g (94%), R_f 0.72 (CHCl₃-MeOH, 20:1), mp 49–51°C, $[\alpha]_D^{23} = +27.1^\circ$ (c = 2.4, CHCl₃). IR spectrum, v,

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 39 No. 12 2003

cm⁻¹: 840 (SiCH₃); 1250 (SiCH₃, OCOCH₃); 1160, 1350 (CF₃); 1665 (C=CC=O). UV spectrum (CHCl₃), λ_{max} , nm (ϵ): 242 (15200). ¹H NMR spectrum, δ, ppm (J, Hz): in CDCl₃: 0.07 s and 0.12 s (18H, SiMe₃), 0.74 s (3H, C¹⁸H₃), 1.23 s (3H, C¹⁹H₃), 1.23 s and 1.41 s (3H, C²¹H₃), 1.35-2.20 m (12H, CH₂), 1.99 s and 2.09 s (6H, MeCO), 2.35 m (2H, 5-H, 17-H), 2.98 m (1H, 9-H), 5.00 br.d (1H, 2-H, J = 1.2), 5.36 br.s (1H, 3-H), 5.84 br.s (1H, 7-H); in C₆D₆: 0.03 s and 0.60 s (18H, SiMe₃), 0.54 s (3H, $C^{18}H_3$), 0.87 s (3H, $C^{19}H_3$), 1.23 s (3H, $C^{21}H_3$), 1.72 s (6H, MeCO), 1.35–2.20 m (12H, CH₂), 2.37 br.d (1H, 17-H, J = 8.0), 2.56 m (1H, 5-H), 3.00 m (1H, 9-H), 5.17 m (1H, 2-H), 5.56 br.s (1H, 3-H), 5.86 br.s (1H, 7-H). ¹³C NMR spectrum, δ_{c} , ppm (J, Hz): in CDCl₃: 1.8 q and 2.0 q (SiMe₃), 16.3 q (C¹⁸), 20.4 t (C¹¹), 21.1 q and 21.1 q (CH₃CO), 21.2 t (C^{16}), 22.4 q (C^{19}), 24.1 q (C^{21}), 29.2 t (C^{15}), 29.7 t (C^{12}), 31.3 t (C^4), 33.8 d (C^9), 33.9 t (C^1), 38.3 s (C¹⁰), 48.9 d (C¹⁷), 49.1 s (C¹³), 50.9 d (C⁵), 66.9 d (C³), 68.6 d (C²), 78.0 q (C²⁰, ${}^{2}J_{CF} = 26.0)$, 87.3 s (C¹⁴), 122.8 d (C⁷), 126.2 q (CF₃, ${}^{1}J_{CF} = 288)$, 163.7 s (C⁸), 170.2 s and 170.3 s (CH₃CO), 201.8 s (C^{6}) ; in C₆D₆: 1.7 q and 2.0 q (SiCH₃), 16.3 q (C¹⁸), 20.6 q and 20.7 q (CH₃CO), 21.6 t (C¹¹), 22.4 q (C¹⁹), 23.1 t (C¹⁶), 24.2 q (C²¹), 29.8 t (C¹⁵), 30.1 t (C¹²), 31.5 t (C⁴), 34.0 d (C⁹), 34.5 t (C¹), 38.4 s (C¹⁰), 49.2 s (C¹³), 49.3 d (C¹⁷), 51.4 d (C⁵), 67.2 d (C³), 69.0 d (C²), 78.5 q (C²⁰, ² J_{CF} = 26.0), 87.6 s (C¹⁴), 123.0 d (C⁷), 126.9 q (CF₃, ¹ J_{CF} = 287), 161.8 s (C^8) , 169.4 s and 169.7 s (CH_3CO) , 199.9 s (C^6) . Found, %: C 58.28; H 7.69. C₃₂H₅₁F₃O₇Si₂. Calculated, %: C 58.15; H 7.78.

(20RS)-2,3-O-Isopropylidene-14α,20-di-O-trimethylsilyl-20-trifluoromethylpoststerone [or (20RS)-2 β ,3 β -isopropylidenedioxy-14 α ,20-bis(trimethylsiloxy)-20-trifluoromethyl-5β-pregn-7-en-6one] (VIII). Tetrabutylammonium fluoride, 0.6 mg, was added to a mixture of 0.128 g (0.27 mmol) of compound VI and 0.115 g (0.81 mmol) of Me₃SiCF₃ in 3 ml of anhydrous THF under stirring at 0°C. The reaction was complete in 3 min (TLC). The mixture was evaporated under reduced pressure, and the residue was subjected to column chromatography on silica gel (3 g) using CHCl₃ as eluent. Yield of VIII 0.051 g (31%), $R_{\rm f}$ 0.63 (CHCl₃-MeOH, 40:1), mp 40–42°C, $[\alpha]_D^{21} = +31.4$ (c = 2.54, CHCl₃). IR spectrum, v, cm⁻¹: 850, 1245 (SiMe); 1145, 1350 (CF_3) ; 1650 (C=CC=O). UV spectrum (CHCl₃), λ_{max} , nm (ϵ): 244 (12500). ¹H NMR spectrum (CDCl₃), δ , ppm (J, Hz): 0.08 s and 0.13 s (18H,

SiMe₃), 0.71 s (3H, C¹⁸H₃), 1.03 s (3H, C¹⁹H₃), 1.34 s and 1.50 s (6H, Me₂C), 1.46 s and 1.73 s (3H, C²¹H₃), 1.25–2.15 m (13H, CH, CH₂), 2.35 d.d (1H, 17-H, J = 8.0, 8.0), 2.67 m (1H, 9-H), 4.18 m (1H, 2-H), 4.28 m (1H, 3-H), 5.81 br.s (1H, 7-H). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm (J, Hz): 1.7 q and 2.9 q (SiMe₃), 16.3 q (C¹⁸), 21.0 t (C¹¹), 21.2 t (C¹⁶), 23.3 q (C¹⁹), 26.2 t (C¹⁵), 26.3 q and 26.3 q (Me₂CO₂), 28.5 q (C²¹), 29.7 t (C¹²), 31.5 t (C⁴), 35.9 d (C⁹), 37.1 t (C¹), 37.4 s (C¹⁰), 48.9 d (C¹⁷), 49.9 s (C¹³), 50.2 d (C⁵), 71.5 d (C³), 72.4 d (C²), 78.1 q (C²⁰, ² $J_{\rm CF} = 26$), 87.6 s (C¹⁴), 108.3 s (Me₂CO₂), 122.1 d (C⁷), 126.2 q (CF₃, ¹ $J_{\rm CF} = 288$), 162.6 s (C⁸), 202.1 s (C⁶). Found, %: C 60.41; H 8.28. C₃₁H₅₁F₃O₅Si₂. Calculated, %: C 60.36; H 8.33.

(20RS)-14a,20-Bis-O-(trimethylsilyl)-20-trifluoromethylpoststerone [or (20RS)- β ,3 β -dihydroxy-14a,20-bis(trimethylsiloxy)-20-trifluoro**methyl-5** β -pregn-7-en-6-one (IX). *a*. To a solution of 0.098 g (0.15 mmol) of compound VII in 3 ml of methanol we added with stirring 0.1 ml of a 20% solution of sodium hydroxide. When the reaction was complete (TLC), the solvent (methanol) was distilled off, and the residue was diluted with water (5 ml) and extracted with ethyl acetate $(3 \times 10 \text{ ml})$. The combined extracts were washed with water (3 ml), dried over MgSO₄, and evaporated under reduced pressure. Yield of **IX** 0.74 g (87%), $R_{\rm f}$ 0.56 (CHCl₃-MeOH, 10:1), mp 108–110°C, $[\alpha]_D^{21} = +18.1^\circ$ (*c* = 2.59, CHCl₃). IR spectrum, v, cm⁻¹: 850, 1245 (SiMe); 1145, 1350 (CF₃); 1665 (C=CC=O). UV spectrum (CHCl₃), λ_{max} , nm (ϵ): 241 (13450). ¹H NMR spectrum (CDCl₃), δ , ppm (*J*, Hz): 0.06 s and 0.13 s (18H, SiMe₃), 0.69 s (3H, C¹⁸H₃), 0.94 s (3H, C¹⁹H₃), 1.25 s and 1.46 s (3H, $C^{21}H_3$), 1.30–2.40 m (13H, CH, CH₂), 2.48 m (1H, 5-H), 2.88 m (1H, 9-H), 3.80 m (1H, 2-H), 4.08 m (1H, 3-H), 5.84 br.s (1H, 7-H). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm (*J*, Hz): 1.7 q and 1.9 q (SiMe₃), 16.2 q (C¹⁸), 21.1 t (C¹¹), 22.3 q (C^{19}), 22.6 t (C^{16}), 24.1 q (C^{21}), 29.3 t (C^{15}), 29.6 t (C¹²), 31.2 t (C⁴), 33.8 d (C⁹), 36.7 t (C¹), 38.1 s (C¹⁰), 48.9 d (C¹⁷), 49.1 s (C¹³), 49.8 d (C⁵), 67.2 d (C³), 68.0 d (C²), 78.0 q (C²⁰, ${}^{2}J_{CF} = 26$), 87.3 s (C¹⁴), 122.4 d (C⁷), 126.2 q (CF₃, ${}^{1}J_{CF} = 288$), 164.0 s (C⁸), 203.8 s (C⁶). Found, %: C 58.53; H 8.16. C₂₈H₄₇F₃O₅Si₂. Calculated, %: C 58.30; H 8.21.

b. A mixture of 0.05 g (0.08 mmol) of compound **VIII** and 1 ml of 70% acetic acid was stirred for 1.5 h. The mixture was then diluted with 10 ml of water and extracted with 1-butanol (3×5 ml). The

combined extracts were washed with water (5 ml) and evaporated under reduced pressure. The residue was purified by column cromatography on silica gel (3 g) using $CHCl_3$ -MeOH (20:1) as eluent. Yield 0.028 g (60%). The product was identical to a sample obtained as described above in *a*.

(20RS)-20-O-Hydro-20-trifluoromethylpoststerone [or (20RS)-2 β ,3 β ,14 α ,20-tetrahydroxy-20trifluoromethyl-5β-pregn-7-en-6-one (X). A mixture of 0.046 g (0.08 mmol) of compound IX, 0.17 g of tetrabutylammonium fluoride, one drop of water, one drop of 5% hydrochloric acid, and 1 ml of THF was stirred for 4 h. Ethyl acetate, 5 ml, was added, and the mixture was washed with 3 ml of water, dried over MgSO₄, and evaporated under reduced pressure. The residue was subjected to column chromatography on silica gel (5 g) using CHCl₃-MeOH (10:1) as eluent. Yield of **X** 0.024 g (70%), $R_{\rm f}$ 0.22 (CHCl₃-MeOH, 5:1), mp 118–120°C, $[\alpha]_D^{20} = +31.8^{\circ}$ (c = 1.1, CHCl₃). IR spectrum, v, cm⁻¹: 1150, 1360 (CF₃); 1650 (C=CC=O). UV spectrum (MeOH), λ_{max} , nm (ϵ): 243 (11470). ¹H NMR spectrum (CD₃OD), δ , ppm (*J*, Hz): 0.87 s (3H, $C^{18}H_3$), 0.95 s (3H, $C^{19}H_3$), 1.45 s and 1.65 s (3H, $C^{21}H_3$), 1.18–2.17 m (13H, CH, CH₂), 2.37 d.d (1H, 17-H, J = 8.0, 8.0), 2.52 t (1H, 5-H, J = 8.9), 3.18 m (1H, 9-H), 3.82 m (1H, 9-H)2-H), 3.94 br.s (1H, 3-H), 5.81 d (1H, 7-H, J = 2.1). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm (*J*, Hz): 17.5 q (C¹⁸), 20.8 t (C¹¹), 21.8 q (C¹⁹), 24.5 q (C²¹), 24.8 t (C^{16}) , 31.9 t (C^{15}) , 32.3 t (C^{12}) , 32.9 t (C^4) , 35.1 d (C^9) , 37.4 t (C^1) , 39.2 s (C^{10}) , 51.8 d (C^5) , 68.5 d (C³), 68.7 d (C²), 76.0 q (C²⁰, ${}^{2}J_{CF} = 25$), 84.9 s (C¹⁴), 122.4 d (C⁷), 128.1 q (CF₃, ${}^{1}J_{CF} = 288$), 167.5 s (C⁸), 206.5 s (C⁶); signals from C¹³ and C¹⁷ are overlapped by the solvent signal (δ_{C} 49 ppm). Found, %: C 61.25; H 7.14. $C_{22}H_{31}F_{3}O_{5}$. Calculated, %: C 61.10; H 7.22.

This study was financially supported by the Russian Foundation for Basic Research (project nos. 00-03-32811 and 02-03-064473 MAS).

REFERENCES

- Enantiocontrolled Synthesis of Organo-Fluorine Compounds: Stereochemical Challenge and Biochemical Targets, Sholoshonok, V.A., Ed., New York: Wiley, 1999.
- 2. Singh, R.P. and Shreeve, J.M., *Tetrahedron*, 2000, vol. 56, p. 7613.
- Olah, G.A., Prakash, G.K.S., and Chambers, R.D., Synthetic Fluorine Chemistry, New York: Wiley, 1992.
- Prakash, S.G.K. and Yudin, A.K., *Chem. Rev.*, 1997, vol. 97, p. 757.
- 5. Odinokov, V.N., Savchenko, R.G., Nazmeeva, S.R., and Galyautdinov, I.V., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 2002, p. 1784.
- 6. Odinokov, V.N., Savchenko, R.G., Nazmeeva, S.R., and Galyautdinov, I.V., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 2002, p. 1810.
- 7. Galbraith, M.N., Horn, D.N.S., Middleton, E.J., and Hackney, R.J., Aust. J. Chem., 1969, vol. 22, p. 1517.
- Odinokov, V.N., Galyautdinov, I.V., Nedopekin, D.V., Khalilov, L.M., Shashkov, A.S., Kachala, V.V., Dinan, L., and Lafont, R., *Insect Biochem. Mol. Biol.*, 2002, vol. 32, p. 161.
- 9. Lafont, R.D. and Wilson, I.D., *The Ecdysone Handbook*, Nottingham: Chromatographic Society, 2000, 3rd ed.